REDUCING DIAGNOSTIC ERROR IN MEDICINE

THROUGH AN UNDERSTANDING OF THE LOGICAL BASIS UNDERLYING THE CONCEPT OF A DIAGNOSIS

© 2017 Mark Gusack, M.D.

MANX Enterprises, Ltd. ${ }^{\text {© }}$

1. Explain how the logical basis of medicine combined with statistical inference is the foundation of the diagnostic process. 2. Describe how Venn diagrams can assist in determine what epidemiologic data is needed to assure reliable diagnostic

SITUATION

The concept of a diagnosis is very complex and involves correlating clinical observations with one or more potential diseases using a combination of statistical inference and one or more logical approaches.

However, data regarding frequency of multiple clinical findings, their relation to each other within any one disease, as well as between more than one disease, are not generally available in the literature.

This prevents us from assessing the reliability of clinical findings singly and as coincident sets in establishing the correct diagnosis with the highest degree of certainty.

PROBLEM

How can we

RISK
QUALITY

Maximize patient safety by establishing the true prior probabilities for clinical sets
Minimize discomfort and the pain suffered due to misdiagnosis caused by absence of these clinical sets Minimize expenditure of scarce resources by relating clinical data to disease using prior probabilities

SOLUTION

It is proposed that data be gathered regarding the frequency with which multiple clinical findings coincide within and across all diseases

From this, diseases most associated with any clinical set can be identified as well as how the relationship of clinical findings within diagnostic sets affect the probability of a disease being present or absent.

It is further proposed that set theory applied through differential diagnosis engines will allow for the very complex Bayes Probabilities to be calculated allowing prioritized differential diagnoses that direct clinical investigation resulting in a high probability of a correct diagnosis.

IMPLEMENTATION

A review of the literature regarding the logic of diagnostic medicine, set theory, and statistical analysis was carried out.

Several prior theoretical models proposed for establishing reliable clinical diagnostic criteria were evaluated

A set of Venn diagrams is presented to illustrate the problem we face regarding potential complexity of the diagnostic process and to show how truly reliable diagnostic criteria can only be established through a higher level of stratification and collation of epidemiologic data.

EXAMPLE VENN DIAGRAMS FOR ESTABLISHING BAYES THEOREM

This increases the ratio and so the probability the patient has Clinical Finding Cln_{1} given Disease Dis,
\rightarrow The probability the patient has both Disease Dis1 and Clinical Finding Cln 1 equals $\mathrm{Dis}, \mathrm{Cl}_{1}$, Poop
This is the concept of Bayes' prior probability.
however, we face a problem. with just one disease and one cinical finding there are five possible venn diagrams. ADD ANOTHER CLIICAL FINDING OR DISEASE AND THE NUMBER RISES TO $5^{2}=25$. ADD ANOTHER AND IT'S $5^{3}=125$
SIMPLEST CASE: Given one diagnosis Dis and one clinical finding Cin $_{1}$ IN population Pop ${ }_{1}$ of $\mathbf{1 0 0}, 000$ there are five possiblities:

this means that, if we wish to solve the problem of diagnostic error in medicine, it will require developing EPIDEMIOOOGIC DATA THAT ALLOWS FOR CAICULATING PROBABULTISS FOR ALI POSSIBLE COMBINATIONS OF CUNICAL CRITERA Refrences - sele

COST BENEFIT ANALYSIS

It can be shown mathematically that calculation of prior probabilities related to sets of clinical findings greatly increases the probability of making a correct diagnosis, and/or, excluding an incorrect diagnosis.

The result would be a dramatic improvement of:
\Rightarrow Patient Safety due to improved diagnostic accuracy
\Rightarrow Quality of Patient Care due to more timely and appropriate therapy
\Rightarrow Value of Resources Spent in the diagnostic and therapeutic process

EXAMPLE

For a relatively simple diagnosis of acute appendicitis, sources in the literature list varying frequencies for some of the most common findings:
\Rightarrow Fever
\Rightarrow Leukocytosis

- Abdominal Pain
\Rightarrow Nausea and Vomiting
However, only a small number of prior probabilities for simultaneously occurring clinical findings can be found. [For example: Fever \cap Leukocytosis \cap Abdominal Pain]. Rarely does the literature routinely include sets of clinical findings that would reliably rule out acute appendicitis. Lack of this epidemiologic data limits the capacity to avoid a misdiagnosis.

The Venn diagrams show that, to assure the highest certainty in making or ruling out a diagnosis, many critical elements of set theory and Bayesian statistics must be understood by both researchers and clinicians.

Therefore, to establish a foundation for significantly Reducing Diagnostic Error in Medicine it will be necessary to create:
\Rightarrow Clinical data sets based on accurate and precise epidemiologic data \Rightarrow Application of set theory to determine prior probabilities
\Rightarrow Differential diagnosis engines to carry out the complex calculations
\Rightarrow eHR's that produce accurate clinical data to feed into these engines

CONCLUSION

The present state of diagnostic "science" is not well developed regarding the underlying logic that drives it.
This is largely due to the absence of reliable epidemiologic data upon which to assemble diagnostic criteria sets that include the probability relationship between the elements of these sets.
Until this issue is fully addressed, all other efforts to:
REDUCE DIAGNOSTIC ERROR IN MEDICINE
are destined to fail.

